Astronomers detect biggest explosion since Big Bang

Researchers say the blast is the biggest since the universe began. It occurred at the center of a galaxy cluster some 390 million light years away from Earth.

NGC 4258, also known as M106, a spiral galaxy like our own Milky Way.
Astronomers have discovered the biggest explosion seen since the begining of the universe, originating from a super-massive black hole.

The blast, they said, is the biggest explosion seen since the Big Bang — the cosmologial model to describe a rapid expansion of matter and energy that created the observable universe. The explosion reportedly released five times more energy than the previous record holder.

The blast occurred at the center of the Ophiuchus cluster of galaxies, some 390 million light years away. The cluster is a conglomeration of thousands of galaxies, hot gas and dark matter bound together by gravity.

“We’ve seen outbursts in the centers of galaxies before but this one is really, really massive, ” said Melanie Johnston-Holitt, a professor at the International Center for Radio Astronomy Research (ICRAR). “And we don’t know why it’s so big.”

Astronomers used NASA’s Chandra X-Ray Observatory to make the discovery, as well as a European space observatory and ground telescopes. Scientists picked up the first sign of the explosion in 2016.

A montage of low-power radio galaxies from the HETDEX region of the LoTSS survey, shown on an optical background.

This montage shows several galaxies from the HETDEX region. More than 200 scientists from 18 countries discovered hundreds of thousands of galaxies that no human has ever seen before. The astronomers created the new map of the northern sky with the radio telescope network LOFAR (Low Frequency Array).

Chandra images of the cluster revealed an unusual curved edge, but scientists ruled out a possible eruption given the amount of energy that would have been needed to create such a large cavity of gas. The curviture was later confirmed to be a cavity.

According to ICRAR, the lead author of the study, Dr Simona Giacintucci from the Naval Research Laboratory in the United States, compared the blast to the 1980 eruption of Mount St. Helens, which tore the top off the mountain.

“The difference is that you can fit 15 Milky Way galaxies in a row into the crater this eruption punched into the cluster’s hot gas,” she said.

The blast is believed to be over by now, and, according to the research team, more observations are needed in other wavelengths to better understand what occurred.

We made this discovery with Phase 1 of the MWA, when the telescope had 2048 antennas pointed towards the sky,” said Johnston-Hollitt. “We’re soon going to be gathering observations with 4096 antennas, which should be 10 times more sensitive. I think that’s pretty exciting.”

Source : DW


Post a Comment

Your email address will not be published. Required fields are marked *